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Level spacing distribution of critical random matrix ensembles
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We consider unitary invariant random matrix ensembles that obey spectral statistics different from the
Wigner-Dyson statistics, including unitary ensembles with slowhlqg®x) growing potentials and the finite-
temperature Fermi gas model. If the deformation parameters in these matrix ensembles are small, the asymp-
totically translational-invariant region in the spectral bulk is universally governed by a one-parameter gener-
alization of the sine kernel. We provide an analytic expression for the distribution of the eigenvalue spacings
of this universal asymptotic kernel, which is a hybrid of the Wigner-Dyson and the Poisson distributions, by
determining the Fredholm determinant of the universal kernel in terms of a PaMlavanscendental func-
tion. [S1063-651X98)51012-4

PACS numbd(s): 05.45+b, 71.30+h

A main goal of quantum chaos study is to describe quanedescribing the bulk correlation of the Gaussian unitary en-
titatively statistical behaviors of spectra of classically nonin-semble(GUE), satisfies ther form of a Painleve/ equation,
tegrable systems, such as complex nufldj billiards [2],

QCD [3], and disordered systenid]. A characteristic ob- iR'(SH ER”(s)
servable in such studies, used analytically or numerically t 2
measure the deviation from integrability, is the probability 5
E(s) of having no energy levels in an interval of widthor  Thejr method is subsequently generalized by Tracy and Wi-
the distribution of spacings between adjacent leve(s)  dom[8] to kernels of the form

=E"(s). These observables capture the behavior of local
correlations of a large number of energy levels, as the former ) P(y) — (xX) P(y)

2
+[7sR (s)]?’=R'(s)[R(s)+sR(s)]%.

consists of an infinite sum of integrals of regulated spectral KOGY) X—y ©
correlators(the subscript reg denotes its regular part, i.e., . . . .
with &-functional peaks at coincident’s subtracte whose component functions satisfy a set of first order linear

differential equations with meromorphic coefficients. This
class of kernels includes Aif@], Besse[10], and their mul-

oo

(_1)pfs’2 ticritical generalizationd11,12), describing correlations at
E(S)_pz‘o p! ,S,gdxl' 2 dxp{p(xa) - p(Xp)reg: the edges of the spectral bands.
(1) However, such invariant random matrix ensembles are

sometimes crude idealizations of physical systems with
A technical virtue of invariant random matrix models of Which we are concerned, based only on the symmetries of
quantum chaotic systenf$,6] is that anyp-point spectral the systems. It isa priori uncle_ar .that random matrix en--
correlation function of the former can be composed from thesembles can still provide quantitative descriptions of realistic

connected two-point function as physical systems where localization of the states can occur
[13]. If there exists such a random matrix ensemble, it must
be a nontrivial deformation of the classical invariant random
X1)- - - p(X = det K(x;,x;). 2 . . : . .
{px)- -+ POXp)dreg 1<ij=p (% %) @ matrix ensembles, so as to violate the wide universality that

the Gaussian ensembles posddgs. One such example is a

This can most easily be proven by the orthogonal polynomiafandom banded matrix ensemijits], modeling quasi-one-

method[5]. It allows a compact expression for the level-free alme_r;tsm_nal(lD) _mtz_itena}ls. éAnoth_er exar(;]ple IS afr. ra(r;dom
probability E(s) as a Fredholm determinant, amiltonian consisting of a Gaussian random maittiand a

diagonal real random matri%/, H,=H+aV. In such
cases spectral correlation functions generally do not allow

E(s)=de(1-K), ) the determinant forn@2), andE(s) is usually evaluated only
' perturbatively ins, by computing eaclp-point correlation
over the interval —s/2,s/2]. function [16]. However, this is not sufficient to determine

Jimboet al. [7] have made a remarkable observation thatp(s)=E"(s) for large s, since it typically takes the form
the logarithmic derivative of the Fredholm determinant,P(s)~saexp(—consp<sb) (generalizations of the Wigner

R(s)= —[logE(9)]’, of the sine kernel surmise by Brody[17] and by Berry and RobniK18]),
whose exponential damping is invisible in the snedixpan-
K(X,y)= sinm(x—y)/m(x—-y), (4)  sion. Alternately, by treating evolution in as a diffusion

process, the joint probability distribution can be deriy&],
but the level spacing distribution is yet to be obtained. The

*On leave from Department of Physics, Tokyo Institute of Tech-aim of this Rapid Communication is to derive(s) from
nology, Oh-okayama, Meguro, Tokyo 152, Japan. random matrix ensembles, which describes a deformation of
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the Wigner-Dyson statistics, while preserving unitary invari- Chen and Muttalitj24] have interpreted a particular uni-

ance at the level of a partition function. tary ensemble with/(x)~ (logx)? as a fermionic system at
Muttalib et al.[20] have introduced thg analogue of the finite temperature. This link is made more concrete by
GUE with a potential (8<q<1) Moshe, Neuberger, and Shapj&b], who have introduced a
. random matrix ensemble
V(M) =, log[1+2q"cosh2 arcsinth)+q2"].  (7) Z:f dN2He—trH2f dUe bUtTUHIUH (14)
n=1 U(N) !
They have shown that, after unfolding the spectrum as yet another unitary invariant deformed ensemble. For a

given unitary matrixU, the interactionb trf[U,H][U,H]"

N X= f" (Vdh ® tries to align random Hermitian matriced! so that
P ’ [U,H]=0. The integration oved then amounts to recover-
ing the U(N) invariance of the model that the GUE has
this ensemble is described by a kernel enjoyed. The basis preference is still realized through the
, spontaneous breaking of th N) invariance. After integrat-
K(xy) f(x+y) O m(x—y),e” " '3] ing overU, the above model is identical to a system of 1D
D N : — : free nonrelativistic fermions in a harmonic potential with
F(2)1(2y) sinfa(x=y) curvature m=+1+4b, and at finite temperatureg
2 ©) =arccosh(t 1/2b), extending the well-known fact that the
f(x)= (X, 7 %) A 1 log 1 GUE is equivalent to free harmonic fermions at zero tem-
costax ' 2 q’ perature. Note thgt-point correlation functions of the local

, spectral densitiesp(\) ==7_,| yn(\)|2/(ePln™ M + 1) are
For e ™72<1, there exists an asymptotically translationalthus still expressed as determinants of the kernel

invariant region where Eq9) is approximated by * Mot (N
. KOV = 2, M. (15)
K _asinm(x—y) 10 n=0 eflen—m4 1
(xy)= T sinfax—y)’ (10)

Accordingly, its level-free probability can be expressed in
terms of the Fredholm determinant of Ed.5). Using the
asymptotics of the one-particle wave functigf(x), given
by the Hermitian polynomials, these authors have also ob-
tained the local form of the kernel(10) with a

It is clear from this form of the kernel that a set of eigenval-
ues with|x;—x;|<1/a obeys the Wigner statistics, and that
with |x; —x;|>1/a obeys the Poisson statistics, i.e., is uncor-
related. Canali and Kravtsd21] argued that th& (N) sym-  _ 72/(2NB). There, the limitN— o is taken while keeping
metry is spontaneously broken in this ensemble, which iy, microscopic unfolded variablefixed. The formula(10)
duces a preferred basis in the matrices and deforms thg \5)ig as long ad\3 is not too large to invalidate the grand
statistics. The universality of this asymptotic kerg) is  canonical picture. Model¢11) and (14) are subsequently
observed for thei-Laguerre unitary ensembl@2], and sub-  nified as an ensemble with multifractal eigenvect®8],
sequently proven for ensembles with potentials that growand the parameta is identified as a measure of the multi-

very slowly as[21] fractality.
5 Surprisingly, this universality within random matrix theo-
V(N)~(1/2a) (loglA[)*  (A—2). (1) ries, if extended to orthogonal ensemt2g], is observed to

. , . ) o, encompass the 3D Anderson model, i.e., a particle hopping
This universality can be considered as an extension af-Bre oy the |attice with random cite energies. Carf@8] has

in's and Zee’s universality14] of the sine kernel for poly-  compared his Monte Carlo results ®fs) for the orthogonal
nomia”y increasing pOtentials, who prOVed it by deriVing theensemb|es with (l@logzx potentia's’ with that for the
asymptotic form of the wave functions Anderson Hamiltonian at the metal/insulator transition mea-
sured precisely in Refl29] by exact diagonalization, and
), (12 observed excellent agreement by tuning the coefficient to
a~2.5. Therea is interpreted as the inverse dimensionless
conductance at the transition point. Motivated by this suc-

N

A
1//N()\)~COS<7TJ p(N)dN+ >

sin 77( fkp_ J”'p” cess, we derive an analytic form of its level spacing distri-
KW )~ (13) bution of Eq.(10) in this Rapid Communication. Although
' A=)\’ ' the a— o limit of the model does not obey the Poissonian

statisticd 30] as is naively expected, the error involved in the
For polynomially increasing potentials, the spectral densityasymptotic kernel(10) is exponentially small[of order
is bounded, and is locally approximated by a constanto(e~7"/3)] in the above parameter range. We complete ear-
Therefore, the unfolding is just a linear transformation, leadiier attempts, which computel(s) numerically[20] or as-
ing universally to the sine kerné#l). However, for the po-  ymptotically [31].
tential (11), the spectral density behaves as(\) We notice that the kernel10) is equivalent to that of
~1/(2aN), implying an unusual unfolding map Dyson’s circular unitary ensemble at finike[5]:
A—Xx=(1/2a)log\, while the formula(13) stays valid[23]. ]
Then the kerne{13) universally reduces to EGL0) after this K(x.y)= sin (N/2) (x—y)
unfolding. ' Nsin (1/2) (x—vy)

(16)
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by the following analytic continuation:

N— mila, x— (2ali)x.

17

Tracy and Widom[8] have also proven that the diagonal
resolvent kernel of Eq.16) is determined by a second-order

differential equation that is reduced to a Painléleequa-
tion [32]. We will reproduce their method below.
The kernel(10) is written as

_ ¢ Ply) — d(x) (y)
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JP(X) :
——=(=1)'RX,t)P(t)).

it (26b

On the other hand, by using the identity s the derivation
operatoy

[D,K1=K(|t)(ts] = [tz){ta]), 27

which follows from the translational invariance of the kernel

(9x+dy)K(x—y)=0, we also have

K(xy) v 2
e —e™ dQ(x) -~
18 ox —IDA-K)THe)
2a ) 2a
d(X)= \/?eaxsmwx, P(X)= \/?eaXCOSn'X. =<x|(1—R)‘1|¢’)
These component functions satisfy +(x|(1=K)"}D,K](1—K) 1| ¢)
b =ad+my, ¥ =—md+ay. (19) =aQ(x) + 7P (x) +R(x,t1)Q(t1) —R(x,t2)Q(tp),
We use the bra-ket notatiof(x) =(x|¢), and so on33]. (283
Due to our choice of the component fynctions tg be realP(X) = — 7Q(X) +aP(x) + ROty P(t) — R(X,t,) P(ty).
valued (unlike [8], Sec. VD, we have(x|O|¢)=(¢|0|x), 24 (289

and similarly fory with any self-adjoint operatch and real

x. Then Eq.(18) is equivalent to Now we sett;=—t, t,=t, Xx,y=—t or t, and introduce

notationst=Q(—1),q=Q(t), p=P(-t),p=P(t), and R
=R(—t,t)=R(t,—t),R=R(t,t)=R(—t,—t). The last two

. A o _ equalities follow from the evenness of the kernel. Then Egs.
whereX andK are the multiplication operator of the inde- ﬁzg) and (24) read, after using Eq(28),

pendent variable and the integral operator with the kerne

[e2 K]=| )%l — |¥)( ], (20)

K(x,y)0(y—t,) 0(t,—y), respectively. Below we will not “pq—“qp=2~Rsinh2at, (299
explicitly write the dependence on the end points of the un-
derlying interval[ t;,t,]. The resolvent kernel is defined as P2+72=(2/7) (ﬁzsinhZatJr Rae 23, (29b)
K -
R(x,y)=<x X y>- (21) p?+q?=(2/m) (R?sinh2at+Rae?). (299
it follows from Eq. (20) that The totalt derivatives of Eqs(29) lead to ( =d/dt)
- . L Pp+4g= (1/7) (Rsinh2at)", (30)
¥ ——=——=(o) (¢l -y —=. (22 e e
1-K] 1-K 1-K R=2R? R=4RR. (31)
that is, The left-hand sides of Eq&29) and(30) satisfy an additional
constraint,
(2= e*)R(x,y) =Q(X)P(y) — P(X)Q(Y),
- (23 (BP+4a)2+(Ba—Tp)?= (F*+T2) (p?+¢?). (32
QX)=(X|[(1-K)"*¢), Px)=(x|(1-K) ). _ .
- L By eliminatingP, p, 4§, g, R, andR from Eqgs.(29—-(32),
At a coincident poinx=y we have we finally obtain forR(s) (s=2t, '=d/ds)
2ae”R(x,X)= Q" (X)P(x) = P’ (X)Q(X). (24) sinta.s 2
_ o acoshas R (s)+ R’(s)| +[msinhas R(s)]?
Now, by using the identity 2
IR =R’(s)([aR(s)]?+asinh2asRs)R’(s)
—_—( — i % . . i =
7, (DKl (=12, @9 +[sintas R (s)12). (33
we obtain This is our main result. It is equivalent to E¢.70 of
Ref. [8] after the analytic continuatiol7), accompanied
dQ(x) , by a redefinition R(s)— (i/2a)R(s). (This is not trivial
= (~ DR, (26 (5)=(1/22)R(s). (

t; because Ref[8] has usedp=p* and §=q*, which
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P(s)

s
FIG. 1. Level spacing distributiorB(s) of the kernel(10). The

limiting distribution fora—« [Ref.[30], Eq.(85)] and the Poisson

distribution are plotted for comparison.

follow from the analytic properties of its component
functionsp(—x) = H(x)* and (—x) = (x)*. It clearly re-

duces to the Painlevé equation(5) for the GUE asa—O0.

In the Wigner-like regioras<1, we can expand hyperbolic

functions into the Taylor series. Then Egd) and (2)
yield
E(s)=1—s+0(s%,

(34
R(s)=—[logE(s)]’=1+s+O(s?).

By imposing this boundary condition, we obtain a perturba

tive solution to Eq(33),

R(s)=1+s+s?+(1 m el 5+11 S(r+a%))
(s)=1+s+s 9 S Ts
(w*+a%)(75—4m*—6a%)\ .

+1- 250 s°+..., (35
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P(s)=[R(s)?>— R’(s)]exp( - f:ds R(s))

m’+a? ) (7% +a?)(27%+3a?) 4
= ST— S
3 45

(7% +a?)(m?+2a?)(37%+5a?)
+ s
945

(72 +a?)?(m°+4a?)
— S7+ e
4050 '

(36)

which is in accord with the expansigiqgs.(1) and(2)].
In Fig. 1 we show plots of the level spacing distributions

P(s) for variousa, such thae™ ™/2< 1, obtained by numeri-
cally solving Eq.(33) under the boundary conditio(84).
These distributions are indeed hybrids of the rescaled
Wigner-Dyson distributiorP(s) ~s? (8=2) for s<1/a and

the Poisson distributioR(s) ~ e~ “°"*s for s=1/a. The ex-
tension of our result to the case of orthogonal ensembles
(B8=1), which corresponds to the Anderson model, will be
reported elsewherg4].
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