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Level spacing distribution of critical random matrix ensembles
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~Received 29 July 1998!

We consider unitary invariant random matrix ensembles that obey spectral statistics different from the
Wigner-Dyson statistics, including unitary ensembles with slowly (; log2x) growing potentials and the finite-
temperature Fermi gas model. If the deformation parameters in these matrix ensembles are small, the asymp-
totically translational-invariant region in the spectral bulk is universally governed by a one-parameter gener-
alization of the sine kernel. We provide an analytic expression for the distribution of the eigenvalue spacings
of this universal asymptotic kernel, which is a hybrid of the Wigner-Dyson and the Poisson distributions, by
determining the Fredholm determinant of the universal kernel in terms of a Painleve´ VI transcendental func-
tion. @S1063-651X~98!51012-4#

PACS number~s!: 05.45.1b, 71.30.1h
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A main goal of quantum chaos study is to describe qu
titatively statistical behaviors of spectra of classically non
tegrable systems, such as complex nuclei@1#, billiards @2#,
QCD @3#, and disordered systems@4#. A characteristic ob-
servable in such studies, used analytically or numerically
measure the deviation from integrability, is the probabil
E(s) of having no energy levels in an interval of widths, or
the distribution of spacings between adjacent levelsP(s)
5E9(s). These observables capture the behavior of lo
correlations of a large number of energy levels, as the for
consists of an infinite sum of integrals of regulated spec
correlators~the subscript reg denotes its regular part, i
with d-functional peaks at coincidentxi ’s subtracted!,

E~s!5 (
p50

`
~21!p

p! E
2s/2

s/2

dx1•••dxp^r~x1!•••r~xp!& reg.

~1!

A technical virtue of invariant random matrix models
quantum chaotic systems@5,6# is that anyp-point spectral
correlation function of the former can be composed from
connected two-point function as

^r~x1!•••r~xp!& reg5 det
1< i , j <p

K~xi ,xj !. ~2!

This can most easily be proven by the orthogonal polynom
method@5#. It allows a compact expression for the level-fr
probability E(s) as a Fredholm determinant,

E~s!5det~12K̂ !, ~3!

over the interval@2s/2,s/2#.
Jimboet al. @7# have made a remarkable observation t

the logarithmic derivative of the Fredholm determina
R(s)52@ logE(s)#8, of the sine kernel

K~x,y!5 sinp~x2y!/p~x2y!, ~4!

*On leave from Department of Physics, Tokyo Institute of Tec
nology, Oh-okayama, Meguro, Tokyo 152, Japan.
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describing the bulk correlation of the Gaussian unitary
semble~GUE!, satisfies thes form of a Painleve´ V equation,

S R8~s!1
s

2
R9~s! D 2

1@psR8~s!#25R8~s!@R~s!1sR8~s!#2.

~5!

Their method is subsequently generalized by Tracy and
dom @8# to kernels of the form

K~x,y!5
f~x!c~y!2c~x!f~y!

x2y
, ~6!

whose component functions satisfy a set of first order lin
differential equations with meromorphic coefficients. Th
class of kernels includes Airy@9#, Bessel@10#, and their mul-
ticritical generalizations@11,12#, describing correlations a
the edges of the spectral bands.

However, such invariant random matrix ensembles
sometimes crude idealizations of physical systems w
which we are concerned, based only on the symmetrie
the systems. It isa priori unclear that random matrix en
sembles can still provide quantitative descriptions of realis
physical systems where localization of the states can oc
@13#. If there exists such a random matrix ensemble, it m
be a nontrivial deformation of the classical invariant rando
matrix ensembles, so as to violate the wide universality t
the Gaussian ensembles possess@14#. One such example is a
random banded matrix ensemble@15#, modeling quasi-one-
dimensional~1D! materials. Another example is a rando
Hamiltonian consisting of a Gaussian random matrixH and a
diagonal real random matrixV, H (a)5H1aV. In such
cases spectral correlation functions generally do not al
the determinant form~2!, andE(s) is usually evaluated only
perturbatively ins, by computing eachp-point correlation
function @16#. However, this is not sufficient to determin
P(s)5E9(s) for large s, since it typically takes the form
P(s);saexp(2const3sb) ~generalizations of the Wigne
surmise by Brody@17# and by Berry and Robnik@18#!,
whose exponential damping is invisible in the small-s expan-
sion. Alternately, by treating evolution ina as a diffusion
process, the joint probability distribution can be derived@19#,
but the level spacing distribution is yet to be obtained. T
aim of this Rapid Communication is to deriveP(s) from
random matrix ensembles, which describes a deformatio

-
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the Wigner-Dyson statistics, while preserving unitary inva
ance at the level of a partition function.

Muttalib et al. @20# have introduced theq analogue of the
GUE with a potential (0,q,1)

V~l!5 (
n51

`

log@112qncosh~2 arcsinhl!1q2n#. ~7!

They have shown that, after unfolding the spectrum

l°x5El

r~l!dl, ~8!

this ensemble is described by a kernel

K~x,y!5
f ~x1y!

Af ~2x! f ~2y!

u1@p~x2y!,e2p2/a#

sinha~x2y!
,

~9!

f ~x![
u4~px,e2p2/a!

coshax
, a[

1

2
log

1

q
.

For e2p2/a!1, there exists an asymptotically translation
invariant region where Eq.~9! is approximated by

K~x,y!5
asinp~x2y!

p sinha~x2y!
. ~10!

It is clear from this form of the kernel that a set of eigenv
ues with uxi2xj u!1/a obeys the Wigner statistics, and th
with uxi2xj u@1/a obeys the Poisson statistics, i.e., is unc
related. Canali and Kravtsov@21# argued that theU(N) sym-
metry is spontaneously broken in this ensemble, which
duces a preferred basis in the matrices and deforms
statistics. The universality of this asymptotic kernel~10! is
observed for theq-Laguerre unitary ensemble@22#, and sub-
sequently proven for ensembles with potentials that gr
very slowly as@21#

V~l!;~1/2a! ~ logulu!2 ~l→`!. ~11!

This universality can be considered as an extension of B´z-
in’s and Zee’s universality@14# of the sine kernel for poly-
nomially increasing potentials, who proved it by deriving t
asymptotic form of the wave functions

cN~l!;cosS pEl

r~l!dl1
Np

2 D , ~12!

K~l,l8!;

sinFpS El

r2El8
r D G

l2l8
. ~13!

For polynomially increasing potentials, the spectral dens
is bounded, and is locally approximated by a consta
Therefore, the unfolding is just a linear transformation, le
ing universally to the sine kernel~4!. However, for the po-
tential ~11!, the spectral density behaves asr(l)
;1/(2al), implying an unusual unfolding map
l°x5(1/2a)logl, while the formula~13! stays valid@23#.
Then the kernel~13! universally reduces to Eq.~10! after this
unfolding.
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Chen and Muttalib@24# have interpreted a particular un
tary ensemble withV(x);(logx)2 as a fermionic system a
finite temperature. This link is made more concrete
Moshe, Neuberger, and Shapiro@25#, who have introduced a
random matrix ensemble

Z5E dN2
He2trH2E

U~N!
dUe2b tr[U,H][ U,H] †

, ~14!

as yet another unitary invariant deformed ensemble. Fo
given unitary matrixU, the interactionb tr@U,H#@U,H#†

tries to align random Hermitian matricesH so that
@U,H#50. The integration overU then amounts to recover
ing the U(N) invariance of the model that the GUE ha
enjoyed. The basis preference is still realized through
spontaneous breaking of theU(N) invariance. After integrat-
ing overU, the above model is identical to a system of 1
free nonrelativistic fermions in a harmonic potential wi
curvature m5A114b, and at finite temperatureb
5arccosh(111/2b), extending the well-known fact that th
GUE is equivalent to free harmonic fermions at zero te
perature. Note thatp-point correlation functions of the loca
spectral densitiesr(l)5(n50

` ucn(l)u2/(eb(en2m)11) are
thus still expressed as determinants of the kernel

K~l,l8!5 (
n50

` cn~l!cn* ~l8!

eb~en2m!11
. ~15!

Accordingly, its level-free probability can be expressed
terms of the Fredholm determinant of Eq.~15!. Using the
asymptotics of the one-particle wave functioncn(x), given
by the Hermitian polynomials, these authors have also
tained the local form of the kernel~10! with a
5p2/(2Nb). There, the limitN→` is taken while keeping
the microscopic unfolded variablex fixed. The formula~10!
is valid as long asNb is not too large to invalidate the gran
canonical picture. Models~11! and ~14! are subsequently
unified as an ensemble with multifractal eigenvectors@26#,
and the parametera is identified as a measure of the mult
fractality.

Surprisingly, this universality within random matrix theo
ries, if extended to orthogonal ensembles@27#, is observed to
encompass the 3D Anderson model, i.e., a particle hopp
on the lattice with random cite energies. Canali@28# has
compared his Monte Carlo results ofP(s) for the orthogonal
ensembles with (1/2a)log2x potentials, with that for the
Anderson Hamiltonian at the metal/insulator transition m
sured precisely in Ref.@29# by exact diagonalization, and
observed excellent agreement by tuning the coefficien
a'2.5. There,a is interpreted as the inverse dimensionle
conductance at the transition point. Motivated by this s
cess, we derive an analytic form of its level spacing dis
bution of Eq.~10! in this Rapid Communication. Although
the a→` limit of the model does not obey the Poissoni
statistics@30# as is naively expected, the error involved in th
asymptotic kernel~10! is exponentially small@of order
O(e2p2/a)] in the above parameter range. We complete e
lier attempts, which computedP(s) numerically@20# or as-
ymptotically @31#.

We notice that the kernel~10! is equivalent to that of
Dyson’s circular unitary ensemble at finiteN @5#:

K~x,y!5
sin ~N/2! ~x2y!

N sin ~1/2! ~x2y!
~16!



al
er

ea

-
n

un
s

el

qs.

RAPID COMMUNICATIONS

PRE 58 R6917LEVEL SPACING DISTRIBUTION OF CRITICAL . . .
by the following analytic continuation:

N→ p i /a , x→ ~2a/ i !x. ~17!

Tracy and Widom@8# have also proven that the diagon
resolvent kernel of Eq.~16! is determined by a second-ord
differential equation that is reduced to a Painleve´ VI equa-
tion @32#. We will reproduce their method below.

The kernel~10! is written as

K~x,y!5
f~x!c~y!2c~x!f~y!

e2ax2e2ay
,

~18!

f~x!5A2a

p
eaxsinpx, c~x!5A2a

p
eaxcospx.

These component functions satisfy

f85af1pc, c852pf1ac. ~19!

We use the bra-ket notationf(x)5^xuf&, and so on@33#.
Due to our choice of the component functions to be r

valued ~unlike @8#, Sec. VD!, we have^xuÔuf&5^fuÔux&,
and similarly forc with any self-adjoint operatorÔ and real
x. Then Eq.~18! is equivalent to

@e2ax̂,K̂#5uf&^cu2uc&^fu, ~20!

where x̂ and K̂ are the multiplication operator of the inde
pendent variable and the integral operator with the ker
K(x,y)u(y2t1)u(t22y), respectively. Below we will not
explicitly write the dependence on the end points of the
derlying interval@ t1 ,t2#. The resolvent kernel is defined a

R~x,y!5K xU K̂

12K̂
UyL . ~21!

It follows from Eq. ~20! that

Fe2ax̂,
K̂

12K̂
G5

1

12K̂
~ uf&^cu2uc&^fu!

1

12K̂
, ~22!

that is,

~e2ax2e2ay!R~x,y!5Q~x!P~y!2P~x!Q~y!,
~23!

Q~x![^xu~12K̂ !21uf&, P~x![^xu~12K̂ !21uc&.

At a coincident pointx5y we have

2ae2axR~x,x!5Q8~x!P~x!2P8~x!Q~x!. ~24!

Now, by using the identity

]K̂

]t i
5~21! i K̂ut i&^t i u, ~ i 51,2!, ~25!

we obtain

]Q~x!

]t i
5~21! iR~x,t i !Q~ t i !, ~26a!
l

el

-

]P~x!

]t i
5~21! iR~x,t i !P~ t i !. ~26b!

On the other hand, by using the identity (D is the derivation
operator!

@D,K̂#5K̂~ ut1&^t1u2ut2&^t2u!, ~27!

which follows from the translational invariance of the kern
(]x1]y)K(x2y)50, we also have

]Q~x!

]x
5^xuD~12K̂ !21uf&

5^xu~12K̂ !21uf8&

1^xu~12K̂ !21@D,K̂#~ I 2K̂ !21uf&

5aQ~x!1pP~x!1R~x,t1!Q~ t1!2R~x,t2!Q~ t2!,

~28a!

]P~x!

]x
52pQ~x!1aP~x!1R~x,t1!P~ t1!2R~x,t2!P~ t2!.

~28b!

Now we set t152t, t25t, x,y52t or t, and introduce

notations q̃5Q(2t),q5Q(t), p̃5P(2t),p5P(t), and R̃
5R(2t,t)5R(t,2t),R5R(t,t)5R(2t,2t). The last two
equalities follow from the evenness of the kernel. Then E
~23! and ~24! read, after using Eq.~28!,

p̃q2q̃p52R̃ sinh2at, ~29a!

p̃21q̃25~2/p! ~R̃2sinh2at1Rae22at!, ~29b!

p21q25~2/p! ~R̃2sinh2at1Rae2at!. ~29c!

The totalt derivatives of Eqs.~29! lead to (•5d/dt)

p̃p1q̃q5 ~1/p! ~R̃ sinh2at!•, ~30!

Ṙ52R̃2, R̈54R̃Ṙ̃. ~31!

The left-hand sides of Eqs.~29! and~30! satisfy an additional
constraint,

~ p̃p1q̃q!21~ p̃q2q̃p!25~ p̃21q̃2!~p21q2!. ~32!

By eliminating p̃, p, q̃, q, R̃, andṘ̃ from Eqs.~29!–~32!,
we finally obtain forR(s) (s[2t, 85d/ds)

S acoshas R8~s!1
sinhas

2
R9~s! D 2

1@p sinhas R8~s!#2

5R8~s!„@aR~s!#21asinh2asR~s!R8~s!

1@sinhas R8~s!#2
…. ~33!

This is our main result. It is equivalent to Eq.~5.70! of
Ref. @8# after the analytic continuation~17!, accompanied
by a redefinition R(s)→( i /2a)R(s). ~This is not trivial

because Ref.@8# has used p̃5p* and q̃5q* , which
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follow from the analytic properties of its compone
functionsf(2x)5f(x)* andc(2x)5c(x)* . It clearly re-
duces to the Painleve´ V equation~5! for the GUE asa→0.
In the Wigner-like regionas!1, we can expand hyperboli
functions into the Taylor series. Then Eqs.~1! and ~2!
yield

E~s!512s1O~s4!,
~34!

R~s!52@ logE~s!#8511s1O~s2!.

By imposing this boundary condition, we obtain a perturb
tive solution to Eq.~33!,

R~s!511s1s21S 12
p21a2

9 D s31S 12
5~p21a2!

36 D s4

1S 12
~p21a2!~7524p226a2!

450 D s51•••, ~35!

FIG. 1. Level spacing distributionsP(s) of the kernel~10!. The
limiting distribution fora→` @Ref. @30#, Eq. ~85!# and the Poisson
distribution are plotted for comparison.
-

P~s!5@R~s!22R8~s!#expS 2E
0

s

ds R~s! D
5

p21a2

3
s22

~p21a2!~2p213a2!

45
s4

1
~p21a2!~p212a2!~3p215a2!

945
s6

2
~p21a2!2~p214a2!

4050
s71•••, ~36!

which is in accord with the expansion@Eqs.~1! and ~2!#.
In Fig. 1 we show plots of the level spacing distributio

P(s) for variousa, such thate2p2/a!1, obtained by numeri-
cally solving Eq. ~33! under the boundary condition~34!.
These distributions are indeed hybrids of the resca
Wigner-Dyson distributionP(s);sb (b52) for s&1/a and
the Poisson distributionP(s);e2const3s for s*1/a. The ex-
tension of our result to the case of orthogonal ensemb
(b51), which corresponds to the Anderson model, will
reported elsewhere@34#.
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